Published 2021

Read in Norwegian

Publication details

Journal : Genetics Selection Evolution , vol. 53 , p. 11 , 2021

International Standard Numbers :
Printed : 0999-193X
Electronic : 1297-9686

Publication type : Academic article

Contributors : Difford, Gareth Frank; Horn, Siri Storteig; Dankel, Elin Katinka Riiser; Ruyter, Bente; Dagnachew, Binyam Sime; Hillestad, Borghild; Sonesson, Anna Kristina; Afseth, Nils Kristian

Research areas

Quality and measurement methods

If you have questions about the publication, you may contact Nofima’s Chief Librarian.

Kjetil Aune
Chief Librarian


Background Product quality and production efficiency of Atlantic salmon are, to a large extent, influenced by the deposition and depletion of lipid reserves. Fillet lipid content is a heritable trait and is unfavourably correlated with growth, thus genetic management of fillet lipid content is needed for sustained genetic progress in these two traits. The laboratory-based reference method for recording fillet lipid content is highly accurate and precise but, at the same time, expensive, time-consuming, and destructive. Here, we test the use of rapid and cheaper vibrational spectroscopy methods, namely near-infrared (NIR) and Raman spectroscopy both as individual phenotypes and phenotypic predictors of lipid content in Atlantic salmon. Results Remarkably, 827 of the 1500 individual Raman variables (i.e. Raman shifts) of the Raman spectrum were significantly heritable (heritability (h2) ranging from 0.15 to 0.65). Similarly, 407 of the 2696 NIR spectral landscape variables (i.e. wavelengths) were significantly heritable (h2 = 0.27–0.40). Both Raman and NIR spectral landscapes had significantly heritable regions, which are also informative in spectroscopic predictions of lipid content. Partial least square predicted lipid content using Raman and NIR spectra were highly concordant and highly genetically correlated with the lipid content values (rgrg = 0.91–0.98) obtained with the reference method using Lin’s concordance correlation coefficient (CCC = 0.63–0.90), and were significantly heritable (h2h2 = 0.52–0.67). Conclusions Both NIR and Raman spectral landscapes show substantial additive genetic variation and are highly genetically correlated with the reference method. These findings lay down the foundation for rapid spectroscopic measurement of lipid content in salmonid breeding programmes.


Topics associated with the publication