Published 2025

Read in Norwegian

Publication details

Journal : Applied and Environmental Microbiology , vol. 91 , p. 1–24 , 2025

International Standard Numbers :
Printed : 0099-2240
Electronic : 1098-5336

Publication type : Academic article

Contributors : Leekitcharoenphon, Pimlapas; Heir, Even; Langsrud, Solveig; Møretrø, Trond; Fagerlund, Annette

Issue : 4

Research areas

Shelf life and food safety

If you have questions about the publication, you may contact Nofima’s Chief Librarian.

Kjetil Aune
Chief Librarian
kjetil.aune@nofima.no

Summary

Listeria monocytogenes presents a significant concern for the food industry due to its ability to persist in the food processing environment. One of the factors contributing to its persistence is decreased sensitivity to disinfectants. Our objective was to assess the diversity of L. monocytogenes sensitivity to food industry disinfectants by testing the response of 1,671 L. monocytogenes isolates to quaternary ammonium compounds (QACs) and 414 isolates to peracetic acid (PAA) using broth microdilution and growth curve analysis assays, respectively, and to categorize the isolates into sensitive and tolerant. A high phenotype-genotype concordance (95%) regarding tolerance to QACs was obtained by screening the genomes for the presence of QAC tolerance-associated genes bcrABC, emrE, emrC, and qacH. Based on this high concordance, we assessed the QAC genes’ dissemination among publicly available L. monocytogenes genomes (n = 39,196). Overall, QAC genes were found in 23% and 28% of the L. monocytogenes collection in this study and in the global data set, respectively. bcrABC and qacH were the most prevalent genes, with bcrABC being the most detected QAC gene in the USA, while qacH dominated in Europe. No significant differences (P > 0.05) in the PAA tolerance were detected among isolates belonging to different lineages, serogroups, clonal complexes, or isolation sources, highlighting limited variation in the L. monocytogenes sensitivity to this disinfectant. The present work represents the largest testing of L. monocytogenes sensitivity to important food industry disinfectants at the phenotypic and genomic level, revealing diversity in the tolerance to QACs while all isolates showed similar sensitivity to PAA.

Contacts:

Secret Link