Published 2025

Read in Norwegian

Publication details

Journal : Microbial Cell Factories , vol. 24 , p. 1–20 , 2025

Publisher : BioMed Central (BMC)

International Standard Numbers :
Printed : 1475-2859
Electronic : 1475-2859

Publication type : Academic article

Contributors : García Calvo, Laura; Kummen, Charlotte; Rustad, Solvor; Rønning, Sissel Beate; Fagerlund, Annette

If you have questions about the publication, you may contact Nofima’s Chief Librarian.

Kjetil Aune
Chief Librarian
kjetil.aune@nofima.no

Summary

Background The yeast Komagataella phaffii (formerly known as Pichia pastoris) has been widely used for functional expression of recombinant proteins, including plant and animal food proteins. CRISPR/Cas9 genome editing systems can be used for insertion of heterologous genes without the use of selection markers. The study aimed to create a convenient markerless knock-in method for integrating expression cassettes into the chromosome of K. phaffii using CRISPR/Cas9 technology. The approach was based on the hierarchical, modular, Golden Gate assembly employing the GoldenPiCS toolkit. Furthermore, the aim was to evaluate the system’s efficiency and suitability for producing secreted recombinant food proteins. Results Three Cas9/sgRNA plasmids were constructed, along with corresponding donor helper plasmids containing homology regions for chromosomal integration via homology-directed repair. The integration efficiency of an enhanced green fluorescent protein (eGFP) expression cassette was assessed at three genomic loci (04576, PFK1, and ROX1). The 04576 locus showed the highest integration efficiency, while ROX1 had the highest transformation efficiency. Whole genome sequencing revealed variable copy numbers of eGFP expression cassettes among clones, corresponding with increasing levels of fluorescence. Furthermore, the system’s applicability for producing recombinant food proteins was validated by successfully expressing and secreting chicken ovalbumin. This constitutes the first report of CRISPR/Cas9 applied to produce recombinant chicken ovalbumin. Conclusions The adapted GoldenPiCS toolkit combined with CRISPR/Cas9 technology enabled efficient and precise genome integration in K. phaffii. This approach holds promise for expanding the production of high-value recombinant proteins. Future research should focus on optimizing integration sites and improving cloning procedures to enhance the system’s efficiency and versatility.

Contacts: