Growth and nitrogen recovery efficiency of potato (Solanum tuberosum) fertilised with shrimp shell pellets
Publication details
Journal : Acta Agriculturæ Scandinavica - Section B, Soil and Plant Science , vol. 69 , p. 559–566–8 , 2019
Publisher : Taylor & Francis
International Standard Numbers
:
Printed
:
0906-4710
Electronic
:
1651-1913
Publication type : Academic article
Issue : 7
Links
:
ARKIV
:
http://hdl.handle.net/11250/26...
DOI
:
doi.org/10.1080/09064710.2019....
If you have questions about the publication, you may contact Nofima’s Chief Librarian.
Kjetil Aune
Chief Librarian
kjetil.aune@nofima.no
Summary
In organic plant production, nitrogen (N) availability is often a growth-limiting factor. Under such conditions, off-farm waste-derived nutrient resources may be an alternative to meet the N demand. In this study, we described a production method for a shrimp shell (SS) pellet Product and evaluated the N fertiliser effect and N recovery efficiency (NRE) in a controlled climate pot experiment with potatoes. The experiment was set up with low, medium and high N levels of SS pellets in comparison with a standard mineral fertiliser (MF) at 9°C, 15°C and 21°C. In a separate study, we examined the loss of N as N2O from SS pellets in comparison with SS powder in a 100 days incubation experiment. The results documented the possibility to formulate a fertiliser pellet product from SS, and that SS pellets were an effective N fertiliser in potato at all Growth temperatures. Nevertheless, a slightly slower development and lower tuber yields than for MF indicated a delayed N-availability from SS pellet fertiliser. NRE after use of MF was around 90%, and about 70% for the different levels of SS pellets. The incubation experiment showed a higher rate of available N for SS powder than for pellets (67% and 39%, respectively) after 100 days of incubation at constant humidity and temperature. This difference was attributed to a lower degree of dissolved materials and a higher rate of denitrification and N2O emissions for pellets than for powder, probably caused by differences in physical properties, occurrence of anoxic hotspots and higher microbial activity around and inside the SS pellets.