Combination of Statistical Approaches for Analysis of 2-DE Data Gives Complementary Results
Publication details
Journal : Journal of Proteome Research , vol. 7 , p. 5119–5124–6 , 2008
International Standard Numbers
:
Printed
:
1535-3893
Electronic
:
1535-3907
Publication type : Academic article
Issue : 12
Links
:
DOI
:
doi.org/10.1021/pr800424c
If you have questions about the publication, you may contact Nofima’s Chief Librarian.
Kjetil Aune
Chief Librarian
kjetil.aune@nofima.no
Summary
Five methods for finding significant changes in proteome data have been used to analyze a two-dimensional gel electrophoresis data set. We used both univariate (ANOVA) and multivariate (Partial Least Squares with jackknife, Cross Model Validation, Power-PLS and CovProc) methods. The gels were taken from a time-series experiment exploring the changes in metabolic enzymes in bovine muscle at five time-points after slaughter. The data set consisted of 1377 protein spots, and for each analysis, the data set were preprocessed to fit the requirements of the chosen method. The generated results were one list from each analysis method of proteins found to be significantly changed according to the experimental design. Although the number of selected variables varied between the methods, we found that this was dependent on the specific aim of each method. CovProc and P-PLS focused more on getting the minimum necessary subset of proteins to explain properties of the samples. These methods ended up with less selected proteins. There was also a correlation between level of significance and frequency of selection for the selected proteins.