Skip to main content

Published 2008

Read in Norwegian

Publication details

Journal : Applied Spectroscopy , vol. 62 , p. 259–266–8 , 2008

International Standard Numbers :
Printed : 0003-7028
Electronic : 1943-3530

Publication type : Academic article

Contributors : Kohler, Achim; Sule-Suso, J.; Sockalingum, Ganesh D.; Tobin, M.; Bahrami, F.; Yang, Y; Pijanka, J; Dumas, P.; Cotte, M.; van Pittius, D.G.; Parkes, G.; Martens, Harald

Issue : 3

If you have questions about the publication, you may contact Nofima’s Chief Librarian.

Kjetil Aune
Chief Librarian
kjetil.aune@nofima.no

Summary

We present an approach for estimating and correcting Mie scattering occurring in infrared spectra of single cells, at diffraction limited probe size, as in synchrotron based microscopy. The Mie scattering is modeled by extended multiplicative signal correction (EMSC) and subtracted from the vibrational absorption. Because the Mie scattering depends non-linearly on alpha, the product of the radius and the refractive index of the medium/sphere causing it, a new method was developed for estimating the Mie scattering by EMSC for unknown radius and refractive index of the Mie scatterer. The theoretically expected Mie contributions for a range of different alpha values were computed according to the formulae developed by Van de Hulst (1957). The many simulated spectra were then summarized by a six-dimensional subspace model by principal component analysis (PCA). This subspace model was used in EMSC to estimate and correct for Mie scattering, as well as other additive and multiplicative interference effects. The approach was applied to a set of Fourier transform infrared (FT-IR) absorbance spectra measured for individual lung cancer cells in order to remove unwanted interferences and to estimate ranges of important a values for each spectrum. The results indicate that several cell components may contribute to the Mie scattering.