Body temperature and seawater adaption in farmed Atlantic salmon and rainbow trout during prolonged chilling
Publication details
Journal : Journal of Fish Biology , vol. 59 , p. 330–337–8 , 2001
Publisher : John Wiley & Sons
International Standard Numbers
:
Printed
:
0022-1112
Electronic
:
1095-8649
Publication type : Academic article
Links
:
DOI
:
doi.org/10.1006/jfbi.2001.1644
If you have questions about the publication, you may contact Nofima’s Chief Librarian.
Kjetil Aune
Chief Librarian
kjetil.aune@nofima.no
Summary
The core temperature of the rainbow trout Oncorhynchus mykiss (3·5 kg) dropped to 1·0° C during the first 6 h of chilling at 0·5° C, remained stable until 24 h, and dropped significantly to 0·7° C after 39 h. Blood plasma osmolality increased and muscle moisture content decreased gradually with increasing chilling time. After 39 h of chilling, the rainbow trout experienced 40 mosmol l-1 higher blood plasma osmolality and 2·8% less muscle moisture content compared with initial values. In the Atlantic salmon Salmo salar (5·3 kg), core temperature dropped to 1·3° C and blood plasma osmolality increased significantly during the first 6 h of chilling at 0·5° C, but remained relatively stable throughout the rest of the experimental period. After 39 h of chilling, the salmon experienced 20 mosmol l-1 higher blood plasma osmolality and 0·5% less muscle moisture content compared with initial values. In rainbow trout muscle moisture content was inversely related to blood plasma osmolality indicating reduced seawater adaptation with increasing hours of chilling. No such relationship was observed in the Atlantic salmon. Hence, changes in plasma osmolality and muscle moisture in the Atlantic salmon do not indicate osmoregulatory failure since the new levels, once established, were maintained throughout the chilling time.