Published 2006

Read in Norwegian

Publication details

Journal : Journal of Fish Biology , vol. 69 , p. 1396–1426–31 , 2006

Publisher : John Wiley & Sons

International Standard Numbers :
Printed : 0022-1112
Electronic : 1095-8649

Publication type : Academic article

Contributors : Bakke-McKellep, Anne-Marie; Refstie, Ståle; Stefansson, Sigurd O.; Vanthanouvong, V; Roomans, G; Hemre, Gro Ingunn; Krogdahl, Åshild

Issue : 5

If you have questions about the publication, you may contact Nofima’s Chief Librarian.

Kjetil Aune
Chief Librarian
kjetil.aune@nofima.no

Summary

Atlantic salmon Salmo salar juveniles were fed either fishmeal-based diets (FM) or diets in which soybean meal (SBM) partly replaced the FM from first feeding on. The fish were kept at continuous daylight during the juvenile stage. During the last 3 weeks before reaching 100 g body mass, all fish were subjected to 12L:12D. Starting at 100 g body mass, groups of 60 fish from each feeding background were subjected to continuous light for 12 weeks (short winter), or a square-wave photoperiod cycle to stimulate parr to smolt transformation with 8L:16D during the first 6 weeks, and then continuous light during the last 6 weeks (long winter). After the 12 weeks, 20 fish from each treatment were subjected to 0, 24 or 96 h seawater exposure at a water salinity of 34. Hypo-osmoregulatory ability at seawater exposure was assessed by mortality, intestinal pathology, plasma ion concentrations and osmolality, gill Na+/K+-ATPase activity and element concentrations in the cytoplasm of distal intestinal enterocytes using X-ray microanalysis. The hypo-osmoregulatory capacity was higher in fish kept at short winter than at long winter, apparently due to more rapid development of gill Na+/K+-ATPase activity. Fish fed SBM suffered typical soybean meal-induced histological alterations of the distal intestine and apparent reductions in digestive function in the more proximal gastrointestinal regions. The net osmoregulatory capacity of these fish was maintained, as indicated by higher gill Na+/K+-ATPase activity and lower plasma Na+, Ca2+ and osmolality compared to the FM-fed fish. Thus, feeding SBM did not impair the hypo-osmoregulatory ability of the Atlantic salmon following seawater exposure. (c) 2006 The Authors Journal compilation