Published 2021

Read in Norwegian

Publication details

Journal : Aquaculture , vol. 532 , p. 16 , 2021

Publisher : Elsevier

International Standard Numbers :
Printed : 0044-8486
Electronic : 1873-5622

Publication type : Academic article

Contributors : Timmerhaus, Gerrit; Lazado, Carlo C.; Cabillon, Nikko Alvin; Reiten, Britt Kristin Megård; Johansen, Lill Heidi

If you have questions about the publication, you may contact Nofima’s Chief Librarian.

Kjetil Aune
Chief Librarian


It is increasingly common to rear Atlantic salmon smolts for longer periods in recirculating aquaculture systems (RAS) before transfer to sea cages. The conditions for this part of the life cycle are currently being optimized, especially the water velocity in the tanks since its impact has been correlated with. growth. Earlier studies indicate that higher water velocities promote growth in salmon, nonetheless, the optimal velocity and its associated health and welfare consequences are yet to be established. In the present study, we determined the effects of different water velocities on growth, muscle development and welfare to estimate the optimum velocity for the rearing of post-smolts in RAS. We divided 2400 salmon post-smolts (average start weight 80 g) into twelve tanks (200 fish per tank) and set the water velocities in four triplicate tanks to low (L) – 0.5 body length per second (BL/s); medium (M) – 1.0 BL/s; high (H) – 1.8 BL/s; and very high (VH) – 2.5 (BL/s). The velocity for the VH group was the highest tested for salmon post-smolts to date. The trial lasted for three months and organ samples were collected at three time points. Time-lapse cameras revealed a relatively even fish distribution in the tank in L and M groups. In contrast, fish in H and VH groups displayed strong schooling behavior at specific regions in the tanks. We observed a close to a linear relationship between water velocity and average growth rate, which resulted in a 5.7% higher average body weight in the VH group in comparison to the L group at termination. The condition factors of fish from the L group was lower than in the other three groups. Muscle cellularity analysis revealed smaller fibers in the L group, while bigger muscle fibers were identified in H and VH groups which contributed to somatic growth. Nonetheless, increased cases of inflammation were observed in H and VH groups. Muscle proteomics revealed decreased translation and carbohydrate activity in the L group. The overall external welfare status of the fish was favorable; however, increased incidence of skin damage (i.e., scale loss, hemorrhaging) and pelvic fin damage (i.e., splitting) in the H and VH groups was documented. Skin histology revealed relatively thinner epidermis at higher velocities. On the other hand, increased cases of aneurysm, lamellar clubbing and fusion were identified at higher velocities too. In conclusion, the increased body weight of fish reared in high water velocities was likely mostly due to enhanced somatic growth of muscle fibers. These findings provide further evidence that elevated water velocities have positive effects on the growth rate of post-smolts even at the highest levels tested to date. On the other hand, the external welfare scores, histological analyses and the molecular data indicate that mucosal health was negatively affected by higher velocities. Thus, based on this study, the optimal water velocity for long term rearing of salmon post-smolts in RAS is most likely located slightly above 1 body length per second.