Published 2001

Read in Norwegian

Publication details

Journal : Microbial Drug Resistance , vol. 7 , p. 363–374 , 2001

International Standard Numbers :
Printed : 1076-6294
Electronic : 1931-8448

Publication type : Academic article

Contributors : Sidhu, Maan Singh; Heir, Even; Sørum, Henning; Holck, Askild

Issue : 4

If you have questions about the publication, you may contact Nofima’s Chief Librarian.

Kjetil Aune
Chief Librarian
kjetil.aune@nofima.no

Summary

Little is known about the occurrence of antimicrobial resistance determinants in staphylococci isolated from food and food processing industries. Quaternary ammonium compound (QAC)-resistant coagulase-negative staphylococci (CNS) isolated from food and food-processing industries were investigated for the presence of genetic determinants (qacA/B and qacC/smr) encoding resistance to the QAC benzalkonium chloride (BC), several antibiotic resistance genes, and staphylococcal insertion sequences IS257 and IS256. Six qacA/B-harboring strains were resistant to penicillin and hybridized to a blaZ probe. The qacA/B and blaZ probes hybridized to plasmids of similar size in three isolates. Molecular and genetic characterization of the 23-kb plasmid (pST6) of Staphylococcus epidermidis St.6 revealed the presence of qacB adjacent to an incomplete beta-lactamase transposon Tn552 encoding the gene cluster blaZ, blaR, and blaI. Sequence analysis of flanking regions and the intergenic region between blaZ and qacB revealed the presence of IS257 downstream of blaZ as well as sin and binR between blaZ and qacB. In the three other BC and penicillin-resistant strains, the qacA/B and blaZ genes were located on separate plasmids. A qacC harboring S. epidermidis strain (St. 17) also hybridized to tetK (tetracycline resistance) and ermB (erythromycin resistance) genes. The individual genes were located on separate plasmids, suggesting no linkage between QAC and antibiotic resistance determinants. Plasmid-free Staphylococcus aureus RN4220 allowed uptake of the pST6 plasmid DNA, indicating that the resistance genes could potentially be transferred to pathogens under selective stress. In conclusion, presence of both resistance determinants could lead to co-selection during antimicrobial therapy or disinfection in hospitals or in food industries.

Contacts: