Skip to main content

Published 2005

Read in Norwegian

Publication details

Journal : Applied and Environmental Microbiology , vol. 71 , p. 3565–3574 , 2005

International Standard Numbers :
Printed : 0099-2240
Electronic : 1098-5336

Publication type : Academic article

Contributors : Mathiesen, Geir; Huehne, Kathrin; Kroeckel, Lothar; Axelsson, Lars; Eijsink, Vincent

If you have questions about the publication, you may contact Nofima’s Chief Librarian.

Kjetil Aune
Chief Librarian
kjetil.aune@nofima.no

Summary

Previous studies of genes involved in the production of sakacin P by Lactobacillus sakei Lb674 revealed the presence of an inducible promoter downstream of the known spp gene clusters. We show here that this promoter drives the expression of an operon consisting of a bacteriocin gene (sppQ), a cognate immunity gene (spiQ), another gene with an unknown function (orf4), and a pseudoimmunity gene containing a frameshift mutation (orf5). The leader peptide of the new one-peptide bacteriocin sakacin Q contains consensus elements that are typical for so-called "double-glycine" leader peptides. The mature bacteriocin shows weak similarity to the BrcA peptide of the two-peptide bacteriocin brochocin C. Sakacin Q has an antimicrobial spectrum that differs from that of sakacin P, thus expanding the antimicrobial properties of the producer strain. The genes encoding sakacin Q and its cognate immunity protein showed strong translational coupling, which was investigated in detail by analyzing the properties of a series of beta-glucuronidase fusions. Our results provide experimental evidence that production of the bacteriocin and production of the cognate immunity protein are tightly coregulated at the translational level.

Contacts: