PROJECT:
 TREAT

 SYSTEM:
 Semi-closed system in sea

 PARTNER:
 Nofima

 CONTACT:
 Andre Meriac (andre.meriac@nofima.no)

 and Jelena Kolarevic (jelena.kolarevic@nofima.no)

Review of technologies for intake water treatment in S-CCS

RESEARCH QUESTION:

• Intake water treatment can help to manage major treats in the production of salmon at sea (e.g. sea lice, AGD, surface pathogens, harmful algae), but large flows typical for S-CCS require large treatment capacities.

Review of current technologies for treating intake water Summary and comparison of potential solution that might allow for the cost-efficient treatment of large volumes of intake water

DURATION: 2019

HIGHLIGHTS:

- Technology overview summarized in Figure 1
- Ultrasound most likely not a feasible technology for treating large flows typical for S-CCS.
- Microscreen filtration is effective to remove sea lice, particulates and increases disinfection efficiency (Screen sizes 50 -100µm necessary)
- UV and AOP allow for disinfection without harmful chemical residues
 - UV treatment is effective to control pathogens but is sensitive toward particulates. Less effective against certain viruses (e.g. IPNV)
 - Advanced oxidation process (AOP) could be a powerful tool to increase disinfection efficiency in intake water treatment, if it can be scaled up successfully
- Dissolved air flotation (DAF) could potentially help in managing harmful algae blooms (HABs)

RECOMMENDATION:

- Combination of microscreen filtration and UV treatment remains the most promising technology for intake water treatment.
 - E.g. 50 μm screen + 35 mJ/cm2 UV, effective to control invertebrate larvae and bacteria in water w/ up to 95 NTU (10-15 in natural waters) (Waite et al., 2003)
- UV-LEDs could increase economic viability of intake water treatment in the future, but not commercially viable on large scale yet
- Investigating potential of AOP for disinfection and DAF for managing HABs in S-CCS

Ctrl/QU/

PRACTICAL CONSIDERATIONS:

- Necessity to systematically address the key question: How much treatment is enough?
 - More research into minimal requirements for water treatment and re-evaluating risks for SCCS (e.g. potential for spray contamination in open SCCS with intake water treatment, or quantifying added benefit of microfiltration in relatively clean salt water before UV treatment)
 - More emphasis on individual risk assessment for different sites
 - "Modular" thinking on intake water treatment, how much treatment is needed when?

The factsheet is not yet ready for implementation. More testing under commercial conditions is needed.

- Dynamic adaptation to stocking and/or "threat level" to save energy
- Partial recirculation could reduce the need for intake water treatment, potentially only "closed" operation during HABs or known disease outbreaks?

READ MORE:

For detailed overview on technology and SWOT analyses, see D12.6/TREAT/2019

Technology	Principle	Mode of action		Effective against			
		Particle removal	Disinfection	Sea lice	HABs	Bacteria	Viruses
Microscreen filtration	Size exclusion	1	×	1	(~)	×	×
UV	Damage to nucleic acids, inactivation	×	¥	(~)	×	1	(√)
AOP	Oxidation of organic matter and damage to nucleic acids (inactivation)	×	×.	√?	V? More op	V ? 07004105	√?
DAF	Foam fractionation	×	x	? ***	- 440 P	×	×
Ultrasound	Particle disruption	(×)	(*)	√?	¥?"	::::v? 	√?

Figure 1: Overview on reviewed intake water treatment technologies. UV: Ultraviolet light, AOP: Advanced oxidation process, DAF: Dissolved air flotation.

