# CtrlAQUA

# UV requirements for inactivation of viruses, bacteria and sea lice

#### **RESEARCH QUESTION:**

To determine the required reduction equivalent UV doses to inactivate selected Atlantic salmon pathogens.

**DURATION: 2020-2023** 

SALINITY TESTED: Salt water

#### **HIGHLIGHTS:**

- The UV dose to inactivate several Atlantic salmon pathogens was compiled and, it was further experimentally determined for six selected agents.
- Two viruses: Infectious salmon anaemia virus - ISAV and Infectious pancreatic necrosis virus - IPNV.
- Three bacteria: Yersinia ruckeri yersinosis agent, Moritella viscosa - winter ulcer disease agent and Tenacibaculum finnmarkense - tenacibaculosis agent.
- One ectoparasite: Sea lice copepodites -Lepeophtheirus salmonis.
- Two collimated beam apparatus were used: a low-pressure and monochromatic UVC lamp ( $\lambda$ =254 nm) and, mediumpressure and polychromatic UVC lamp emitting at multiple wavelengths, ( $\lambda$ =220-300 nm).
- A UVC dose < 25 mJ/cm<sub>2</sub> inactivates (99.9%) all bacteria and viruses tested and reviewed, with exception of IPNV (43-250  $mJ/cm_{2}$ ).
- Very high UV doses >100 mJ/cm<sub>2</sub> are required for sea lice losing its mobility and to have any relevant mortality.
- Differences between the two UV technologies are visible at high UV doses  $(25-100 \text{ mJ/cm}_{2})$ ; medium pressure then

requires significantly lower doses to inactivate pathogens.

#### **RECOMMENDATION:**

- It is recommended to use a UV dose of 25 mJ/cm<sub>a</sub>.
- When IPNV is present in the water a UV dose needs to be higher and a mediumpressure UV is recommended.
- UVC is not recommended to eliminate sealice copepodites.

## **READ MORE:**

D8.2.INTAKE2020 Power-point summary on required UV doses to inactivate Atlantic

D8.3.INTAKE2020\_Report on the required reduction equivalent UV doses to inactivate selected Atlantic salmon pathogens and the impact of UV treatment of UV treatment on seawater microbial communities' equilibrium. D8.1INTAKE2021 Power-point summary on required UV doses to inactivate Atlantic salmon sea lice\_Nofima.











## **READ MORE:**

D8.1INTAKE2021\_Power-point summary on required UV doses to inactivate Atlantic salmon sea lice\_NORCE.

D8.3INTAKE2022\_Power-point summary on

The factsheet is not yet ready for implementation. More testing under commercial conditions is needed.

the UV inactivation of naturally occurring pathogens in intake water from semi-closed systems.

| Table 1. Required UN | / doses (mJ/cm <sub>2</sub> ) to | inactivate selected | Atlantic salmon pathogens. |
|----------------------|----------------------------------|---------------------|----------------------------|
|----------------------|----------------------------------|---------------------|----------------------------|

| Pathogen                                       | UV dose   | Reference         |
|------------------------------------------------|-----------|-------------------|
|                                                |           |                   |
| Virus                                          |           |                   |
| Infectious salmon anaemia virus (ISAV)         | 2 – 7.5   | this study, 1,2,3 |
| Infectious pancreatic necrosis virus (IPNV)    | 43 – 250  | this study, 1,2,3 |
| Viral haemorrhagic septicaemia virus (VHSV)    | 0.8 - 3.3 | 1,3,4             |
| Infectious hematopoietic necrosis virus (IHNV) | 1-4       | 4,5               |
|                                                |           |                   |
| Bacteria                                       |           |                   |
| Vibrio anguillarum                             | 2.9 – 24  | 7,8               |
| Aliivibrio salmonicida                         | 2.2       | 9                 |
| Aeromonas salmonicida subsp salmonicida        | 0.1 - 24  | 7,9               |
| Yersinia ruckeri                               | 2.7 – 24  | this study, 7,9   |
| Moritella viscosa                              | 2         | this study        |
| Tenacibaculum finnmarkense                     | 3.3       | this study        |
|                                                |           |                   |
| Ectoparasite                                   |           |                   |
| Paramoebae perurans                            | 4*        | 10                |
| Lepeophtheirus salmonis copepodites            | > 100#    | this study        |

#### Notes:

to reproduce.

#UV dose at which 30% of copepodites lose mobility

1 UV dose range for low pressure and medium pressure UV. At high UV doses > 25-50 mJ/  $cm_2$  the inactivation differs significantly between these two UV technologies.

2 If not stated otherwise in the table inactivation refer to log 3 i.e., 99.9%

3For reference details see DELIVERABLE 8.2/2020. Power-point summary on required UV doses to inactivate Atlantic salmon pathogens.

\*UV dose at which amoebae lose ability dites lose mobility.

